Orbit equivalence, flow equivalence, and C*-algebras

Kevin Aguyar Brix

University of Glasgow kevinaguyarbrix.github.io Funded by Carlsberg Foundation Internationalisation Fellowship

NYC NCG seminar 15. September 2021

Overview

Odometer

Let $q_{k+1} \colon \mathbb{Z}/2^{k+1}\mathbb{Z} \to \mathbb{Z}/2^k\mathbb{Z}$ be the canonical quotient map and consider the projective limit

$$X = \{(x_k)_k \in \prod_k \mathbb{Z}/2^k \mathbb{Z} : q_{k+1}(x_{k+1}) = x_k \forall k\}$$

with the transformation $T: X \to X$ given by $Tx_k = x_k + 1$.

Remark

Then X is the Cantor set, and T is a minimal homeomorphism.

Cantor minimal systems

Definition

A Cantor Minimal System (X, T) is a Cantor set X equipped with a minimal homeomorphism $T: X \to X$.

Corollary (GPS95)

Any (uniquely ergodic) Cantor minimal system is orbit equivalent to an odometer or a Denjoy system.

Cantor minimal systems

Theorem (GPS95)

For Cantor minimal systems (X_1, T_1) and (X_2, T_2) the following are equivalent:

- they are strong orbit equivalent;
- $K^0(X_1, T_1) \cong K^0(X_2, T_2)$ as ordered groups with distinguished order units (ordered cohomology);
- $\ \, { o } \ \, C(X_1)\rtimes_{T_1}\mathbb{Z}\cong C(X_2)\rtimes_{T_2}\mathbb{Z} \ \, as \ C^*\text{-algebras}.$

Remark

The group $K^0(X,T) = C(X,\mathbb{Z})/\{f - f \circ T : f \in C(X,\mathbb{Z})\}$ is the ordered cohomology.

Sturmian subshifts

Let $\alpha \in (0,1) \setminus \mathbb{Q}$ and consider the rigid rotation $R_{\alpha} \colon [0,1) \longrightarrow [0,1)$ given by $R_{\alpha}(t) = t + \alpha \pmod{1}$. Consider $I_{\alpha} \colon [0,1) \longrightarrow \{0,1\}$ given by

$$I_{\alpha}(t) = \begin{cases} \mathbf{0}, & t \in [0, 1 - \alpha), \\ \mathbf{1}, & t \in [1 - \alpha, 1). \end{cases}$$

The Sturmian shift is then

$$\bar{\mathsf{X}}_{\alpha} = \overline{\{(I_{\alpha}(R^{i}_{\alpha}(t)))_{i \in \mathbb{Z}} : t \in [0,1)\}} \subset \{ \mathbf{0}, 1 \}^{\mathbb{Z}}$$

with the shift transformation $\sigma_{\alpha} \colon \bar{X}_{\alpha} \to \bar{X}_{\alpha}$.

Sturmian subshifts

Note

The Sturmian system $(\bar{X}_{\alpha}, \bar{\sigma}_{\alpha})$ is a Cantor minimal system (a Denjoy system).

C(X
_α) ⋊ Z is understood (AT-algebra, real rank zero, stable rank 1, ...);

•
$$K^0(\bar{X}_\alpha, \bar{\sigma}_\alpha) = \mathbb{Z} + \alpha \mathbb{Z} \subset \mathbb{R}$$

Overview

Shifts of finite type

The edge shift of directed graph E with adjacency matrix A is the compact space

$$\bar{\mathsf{X}}_A = \{ x = (x_n)_{n \in \mathbb{Z}} \in (E^1)^{\mathbb{Z}} : r(x_n) = s(x_{n+1}), n \in \mathbb{Z} \}$$

equipped with the shift $\sigma_A(x)_n = x_{n+1}$ for $x \in \overline{X}_A$ and $n \in \mathbb{Z}$.

Example

The graph defines the full 2-shift with path space $\bar{X}_{[2]} = \{0, 1\}^{\mathbb{Z}}$.

Cuntz–Krieger algebras

Theorem (Cuntz–Krieger+)

To every (irreducible and nonpermutation) \mathbb{N} -matrix A, there exists a universal unital C^* -algebra

$$\mathcal{O}_A = \overline{span} \{ s_\alpha s_\beta^* : \alpha, \beta \text{ finite paths} \}$$

generated by |A| partial isometries s_i . There is a canonical gauge action $\gamma^A : \mathbb{T} \curvearrowright \mathcal{O}_A$ given by

$$\gamma_z^A(s_i) = z s_i,$$

and a (maximal) diagonal subalgebra

$$\mathcal{D}_A = \overline{span} \{ s_\alpha s_\alpha^* : \alpha \text{ a finite path} \}$$

Cuntz–Krieger algebras

Observations:			
_	Α	\mathcal{O}_A	
	Irreducibility Irreducible components	Simplicity Ideal structure	
	Path space: X_A	$\mathcal{D}_A = C(X_A)$ (Diagonal)	
	Time stretching Perron eigenvalue (entropy)	Gauge action γ^A KMS-structure	

Shifts of finite type

Definition

A pair of shifts \bar{X}_A and \bar{X}_B are conjugate if there is a homeomorphism $h: \bar{X}_A \to \bar{X}_B$ satisfying $h \circ \sigma_A = \sigma_B \circ h$.

Example

Are the systems given by the matrices

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 12 \\ 1 & 1 \end{bmatrix}$$

conjugate?

Flow Equivalence

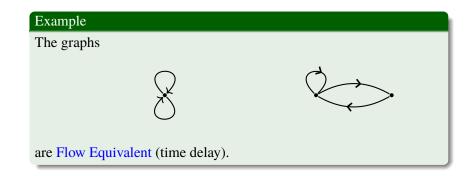
Flow equivalence is a coarse (but important!) relation in symbolic dynamics.

Definition

From (X, T), we construct

- $X \times \mathbb{R}$ and $(\sigma(x), t) \sim (x, t+1)$;
- $X \times \mathbb{R} / \sim$ is the mapping torus with induced \mathbb{R} -flow.

Flow Equivalence



Flow Equivalence

Example (Cuntz splice)

The graphs

are not flow equivalent: different sign of determinant I - A.

Flow equivalence

For irreducible shifts of finite type, the following are equivalent:

- (\bar{X}_A, σ_A) and (\bar{X}_B, σ_B) are flow equivalent;
- $K^0(\bar{X}_A, \sigma_A) \cong K^0(\bar{X}_B, \sigma_B)$ as ordered groups (no unit);
- $K_0(\mathcal{O}_A) \cong K_0(\mathcal{O}_B)$ and $\det(I A) = \det(I B)$;

$$[\mathcal{O}_A \otimes \mathbb{K}, \mathcal{D}_A \otimes c_0] \cong [\mathcal{O}_B \otimes \mathbb{K}, \mathcal{D}_B \otimes c_0].$$

(Cuntz–Krieger, Boyle–Handelman, Bowen–Franks, Matsumoto–Matui)

Problem.

- Classify shifts of finite type up to orbit equivalence.
- What does ordered cohomology with unit reflect?

Overview

General subshifts

A general subshift is a closed subset $X \subset \{1, \cdots, N\}^{\mathbb{Z}}$ which is shift-invariant.

Problem.

Classify subshifts up to flow equivalence.

General subshifts

Start with a subshift (X, σ_X) :

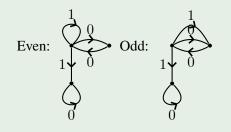
- construct the cover $(\tilde{X}, \sigma_{\tilde{X}})$;
- **2** construct the Deaconu–Renault groupoid G_X with unit space X;
- let $\mathcal{O}_X = C^*(G_X)$ with $C(X) \subset \mathcal{O}_X$ and gauge action $\gamma^X \colon \mathbb{T} \curvearrowright \mathcal{O}_X$.

Problem.

How does \mathcal{O}_X remember the underlying dynamics?

Sofic subshifts

Example



The map defined by sending $1 \mapsto 10$ defines a flow equivalence.

Sofic subshifts

Theorem (B-Carlsen2020)

Sofic subshifts $(\bar{X}, \sigma_{\bar{X}})$ and $(\bar{Y}, \sigma_{\bar{Y}})$ (with no periodic points isolated in past equivalence) are flow equivalent if and only if

$$[\mathcal{O}_X \otimes \mathbb{K}, C(X) \otimes c_0] \cong [\mathcal{O}_Y \otimes \mathbb{K}, C(Y) \otimes c_0].$$

Is this a general phenomenon?

C*-results

Let $(\bar{X},\sigma_{\bar{X}})$ and $(\bar{Y},\sigma_{\bar{Y}})$ be subshifts.

Theorem (B-Carlsen2020)

($\bar{X}, \sigma_{\bar{X}}$) and $(\bar{Y}, \sigma_{\bar{Y}})$ are conjugate if and only if

 $[\mathcal{O}_X \otimes \mathbb{K}, C(X) \otimes c_0, \gamma^X \otimes \mathrm{id}] \cong [\mathcal{O}_Y \otimes \mathbb{K}, C(Y) \otimes c_0, \gamma^Y \otimes \mathrm{id}];$

• If $(\bar{X}, \sigma_{\bar{X}})$ and $(\bar{Y}, \sigma_{\bar{Y}})$ are flow equivalent, then $[\mathcal{O}_X \otimes \mathbb{K}, C(X) \otimes c_0] \cong [\mathcal{O}_Y \otimes \mathbb{K}, C(Y) \otimes c_0].$

We need to investigate invariants of $\mathcal{O}_X \otimes \mathbb{K}$ with $C(X) \otimes c_0$.

Overview

Case study: Sturmian subshifts

Let $\alpha \in (0,1) \setminus \mathbb{Q}$ and consider the rigid rotation $R_{\alpha} \colon [0,1) \longrightarrow [0,1)$ given by $R_{\alpha}(t) = t + \alpha \pmod{1}$. Consider $I_{\alpha} \colon [0,1) \longrightarrow \{0,1\}$ given by

$$I_{\alpha}(t) = \begin{cases} \mathbf{0}, & t \in [0, 1 - \alpha), \\ \mathbf{1}, & t \in [1 - \alpha, 1). \end{cases}$$

The Sturmian subshift is then

$$\bar{\mathsf{X}}_{\alpha} = \overline{\{(I_{\alpha}(R^{i}_{\alpha}(t)))_{i \in \mathbb{Z}} : t \in [0,1)\}} \subset \{\boldsymbol{0},\boldsymbol{1}\}^{\mathbb{Z}}.$$

Case study: Sturmian subshifts

The shift operation $\sigma_{\alpha} \colon \bar{X}_{\alpha} \to \bar{X}_{\alpha}$ defines a Cantor minimal system. Two distinct C^* -algebras:

- the crossed product $C(\bar{X}_{\alpha}) \rtimes \mathbb{Z}$;
- **2** the shift space C^* -algebra \mathcal{O}_{α} .

Lemma (Carlsen)

There is a short exact sequence

$$0 \to \mathbb{K} \to \mathcal{O}_{\alpha} \to C(\bar{\mathsf{X}}_{\alpha}) \rtimes \mathbb{Z} \to 0$$

Case study: Sturmian subshifts

Theorem

Let $\alpha, \beta \in (0, 1) \setminus \mathbb{Q}$. Then conjugacy is equivalent to:

• $\mathcal{O}_{\alpha} \cong \mathcal{O}_{\beta};$

•
$$\alpha = \beta, 1 - \beta;$$

• $\mathbb{Z} + \alpha \mathbb{Z} \cong \mathbb{Z} + \beta \mathbb{Z}$ with order and with unit.

Theorem

Let $\alpha, \beta \in (0, 1) \setminus \mathbb{Q}$. Then flow equivalence is equivalent to:

- $\mathcal{O}_{\alpha} \otimes \mathbb{K} \cong \mathcal{O}_{\beta} \otimes \mathbb{K};$
- $\alpha \sim \beta$ (equivalence of irrationals);
- $\mathbb{Z} + \alpha \mathbb{Z} \cong \mathbb{Z} + \beta \mathbb{Z}$ with order and without unit.

Case study: Sturmian subshifts

Let $(X_{\alpha}, \sigma_{\alpha})$ be Sturmian.

Theorem (B)

- The cover is $\tilde{X}_{\alpha} = \bar{X}_{\alpha} \cup \{\text{countable discrete orbit}\};$
- The C^* -algebra \mathcal{O}_{α} is infinite (not properly infinite), has real rank zero and stable rank 2, and nuclear dimension one.

- Operator algebraic approach to the flow equivalence problem;
- Operator algebraic approach to the conjugacy problem;
- Emphasis on one-sided versions;
- In depth study of Sturmian systems (nuclear dimension);
- Noncommutative dynamical systems and Cuntz–Pimsner algebras. (in progress)

